您好 欢迎来到超硬材料网  | 免费注册
手机资讯手机资讯
官方微信官方微信

元素六专利:单晶CVD合成金刚石材料

关键词 元素六 , 单晶 , CVD|2014-12-12 09:09:50|行业专利|来源 中国超硬材料网
摘要   申请号:201280068219.4申请人:六号元素技术有限公司摘要:一种单晶CVD合成金刚石材料,其包括:大于或等于5ppm的总生成态氮浓度,和均匀分布的缺陷,其中,所
  申请号:201280068219.4

       申请人:六号元素技术有限公司

       摘要: 一种单晶CVD合成金刚石材料,其包括:大于或等于5ppm的总生成态氮浓度,和均匀分布的缺陷,其中,所述均匀分布的缺陷通过下列特性中的一种或多种限定:(i)当通过次级离子质谱法(SIMS)在大于或等于50×50μm的区域上使用10μm或更小的分析区域进行映象时,总氮浓度拥有的逐点变化(point-to-pointvariation)小于平均总氮浓度值的30%,或者当通过SIMS在大于或等于200×200μm的区域上使用60μm或更小的分析区域进行映象时,总氮浓度拥有的逐点变化小于平均总氮浓度值的30%;(ii)使用77K紫外光-可见光吸收测量法测量的生成态氮空位缺陷(NV)浓度大于或等于50ppb,其中,氮空位缺陷均匀分布在合成单晶CVD金刚石材料中,使得当使用采用了50mW连续波激光器、在室温下的光斑尺寸小于或等于10μm的514nm激光激发源进行激发,并且在大于或等于50×50μm的区域上用小于10μm的数据区间进行映象时,存在较低的逐点变化,其中,对于575nm的光致发光峰值(NV0)或者637nm的光致发光峰值(NV-)来说,高光致发光强度的区域与低光致发光强度的区域之间的氮空位光致发光峰值的强度面积比<2x;(iii)当使用采用了50mW连续波激光器、在室温下的光斑尺寸小于或等于10μm的514nm激光激发源进行激发(在552.4nm下得到Raman峰值),并且在大于或等于50×50μm的区域上用小于10μm的数据区间进行映象时,Raman强度的变化使得存在较低的逐点变化,其中,低Raman强度的区域与高Raman强度的区域之间的Raman峰值面积比<1.25x;(iv)使用77K紫外光-可见光吸收测量法测量的生成态氮空位缺陷(NV)浓度大于或等于50ppb,其中,当使用采用了50mW连续波激光器、在77K温度下的光斑尺寸小于或等于10μm的514nm激光激发源进行激发时,在对应于NV0的575nm下给出比在552.4nm下的Raman强度的120倍更大的强度,和/或在对应于NV-的637nm下给出比在552.4nm下的Raman强度的200倍更大的强度;(v)单原子替代氮缺陷(Ns)浓度大于或等于5ppm,其中,单原子替代氮缺陷均匀分布在合成单晶CVD金刚石材料中,使得通过使用1344cm-1红外吸收特征并对面积大于0.5mm2的区域采样,根据标准偏差除以平均值推导出的变化小于80%;(vi)由标准偏差除以平均值定义的红光发光强度的变化小于15%;(vii)中性单原子替代氮浓度的平均标准偏差小于80%;以及(viii)利用由平均灰度值大于50的显微图像得出的直方图测量的颜色强度,其中,所述颜色强度在单晶CVD合成金刚石材料中是均匀的,使得以灰度值标准偏差除以灰度值平均值为特征的灰度色的变化小于40%。

       主权利要求 1.一种单晶CVD合成金刚石材料,其包括:大于或等于5ppm的总生成态氮浓度,和均匀分布的缺陷,其中,所述均匀分布的缺陷通过下列特性中的一种或多种限定:(i)当通过次级离子质谱法(SIMS)在大于或等于50×50μm的区域上使用10μm或更小的分析区域进行映象时,总氮浓度拥有的逐点变化(point-to-pointvariation)小于平均总氮浓度值的30%,或者当通过SIMS在大于或等于200×200μm的区域上使用60μm或更小的分析区域进行映象时,总氮浓度拥有的逐点变化小于平均总氮浓度值的30%;(ii)使用77K紫外光-可见光吸收测量法测量的生成态氮空位缺陷(NV)浓度大于或等于50ppb,其中,氮空位缺陷均匀分布在整个整个合成单晶CVD金刚石材料中,使得当使用采用了50mW连续波激光器、在室温下的光斑尺寸小于或等于10μm的514nm激光激发源进行激发,并且在大于或等于50×50μm的区域上用小于10μm的数据区间进行映象时,存在较低的逐点变化,其中,对于575nm的光致发光峰值(NV0)或者637nm的光致发光峰值(NV-)来说,高光致发光强度的区域与低光致发光强度的区域之间的氮空位光致发光峰值的强度面积比<2x;(iii)当使用采用了50mW连续波激光器、在室温下的光斑尺寸小于或等于10μm的514nm激光激发源进行激发(在552.4nm下得到Raman峰值),并且在大于或等于50×50μm的区域上用小于10μm的数据区间进行映象时,Raman强度的变化使得存在较低的逐点变化,其中,低Raman强度的区域与高Raman强度的区域之间的Raman峰值面积比<1.25x;(iv)使用77K紫外光-可见光吸收测量法测量的生成态氮空位缺陷(NV)浓度大于或等于50ppb,其中,当使用采用了50mW连续波激光器、在77K温度下的光斑尺寸小于或等于10μm的514nm激光激发源进行激发时,在对应于NV0的575nm下给出比在552.4nm下的Raman强度的120倍更大的强度,和/或在对应于NV-的637nm下给出比在552.4nm下的Raman强度的200倍更大的强度;(v)单原子替代氮缺陷(Ns)浓度大于或等于5ppm,其中,单原子替代氮缺陷均匀分布在整个合成单晶CVD金刚石材料中,使得通过使用1344cm-1红外吸收特征并对面积大于0.5mm2的区域采样,根据标准偏差除以平均值推导出的变化小于80%;(vi)由标准偏差除以平均值定义的红光发光强度的变化小于15%;(vii)中性单原子替代氮浓度的平均标准偏差小于80%;以及(viii)利用由平均灰度值大于50的显微图像得出的直方图测量的颜色强度,其中,所述颜色强度在整个单晶CVD合成金刚石材料中是均匀的,使得以灰度值标准偏差除以灰度值平均值为特征的灰度色的变化小于40%。

       2.如权利要求1所述的单晶CVD合成金刚石材料,其中,所述 单晶CVD合成金刚石材料包括所述特性中的两种、三种、四种、五 种、六种、七种或全部八种。

       3.如权利要求1或2所述的单晶CVD合成金刚石材料,其中, 当通过次级离子质谱法(SIMS)在大于或等于50×50μm的区域上用 定义为10μm或更小的分析区域进行映象时,总氮浓度拥有的逐点变 化小于平均氮浓度值的25%、20%、15%、10%、5%、3%、或1%。

       4.如前述权利要求中的任意一项所述的单晶CVD合成金刚石材 料,其中,当在大于或等于50×50μm的区域上用定义为10μm或更 小的分析区域进行映象时,来自氮空位缺陷的发光拥有逐点变化,使 得高PL强度的区域和低PL强度的区域之间的强度比小于1.8、1.6、 1.4、或1.2。

       5.如前述权利要求中的任意一项所述的单晶CVD合成金刚石材 料,其中,在575nm下的NV0发光大于在552.4nm下的Raman强度 的140倍、160倍、或180倍,和/或在637nm下的NV-发光大于在 552.4nm下的Raman强度的220倍、240倍、或260倍;

       6.如前述权利要求中的任意一项所述的单晶CVD合成金刚石材 料,单原子替代氮缺陷均匀分布在整个合成单晶CVD金刚石材料中, 使得通过使用来自单原子替代氮缺陷的1344cm-1红外吸收特征并对面 积大于0.5mm2的区域采样,根据标准偏差除以平均值推导出的变化 小于60%、40%、20%、或10%。

       7.如前述权利要求中的任意一项所述的单晶CVD合成金刚石材 料,其中,红色发光的变化小于10%、8%、6%、或4%。

       8.如前述权利要求中的任意一项所述的单晶CVD合成金刚石材 料,其中,中性单原子替代氮浓度的平均标准偏差小于60%、40%、 20%、或10%。

       9.如前述权利要求中的任意一项所述的单晶CVD合成金刚石材 料,其中,当在大于或等于200×200×200μm的体积上成像时,颜色 强度拥有的逐点变化小于由灰度值标准偏差除以灰度值平均值定义的 平均颜色强度的30%、20%、10%、或5%。

       10.如前述权利要求中的任意一项所述的单晶CVD合成金刚石 材料,其中,总氮浓度大于或等于7ppm、10ppm、15ppm、20ppm、 30ppm、50ppm、75ppm、100ppm、150ppm、200ppm、或300ppm。

       11.如前述权利要求中的任意一项所述的单晶CVD合成金刚石 材料,其中,单原子替代氮缺陷(Ns)浓度大于或等于5ppm、7ppm、 10ppm、15ppm、20ppm、30ppm、50ppm、75ppm、100ppm、150ppm、 200ppm、或300ppm。

       12.如前述权利要求中的任意一项所述的单晶CVD合成金刚石 材料,其中,生成态氮空位缺陷(NV-)浓度大于或等于120ppb、 140ppb、160ppb、180ppb、200ppb、250ppb、300ppb、400ppb、500ppb、 1000ppb、或5000ppb。

       13.如前述权利要求中的任意一项所述的单晶CVD合成金刚石 材料,具有的硅浓度小于或等于1×1015原子cm-3。

       14.如前述权利要求中的任意一项所述的单晶CVD合成金刚石 材料,其中,所述单晶CVD合成金刚石材料具有的最长尺寸大于或 等于200μm、500μm、1mm、1.5mm、2.0mm、3.0mm、或5.0mm。

       15.如前述权利要求中的任意一项所述的单晶CVD合成金刚石 材料,具有的体积大于或等于0.01mm3、0.05mm3、0.1mm3、0.5mm3、 1.0mm3、3.0mm3、6.0mm3、9.0mm3、或15.0mm3,所述一种或多种 特性在该体积中成立。

       16.如前述权利要求中的任意一项所述的单晶CVD合成金刚石 材料,其中,所述单晶CVD合成金刚石材料为厚度小于200μm、 100μm、50μm、20μm、10μm、5μm、2μm、或1μm的层的形式。

       17.如权利要求1到15中的任意一项所述的单晶CVD合成金刚 石材料,其中,所述单晶CVD合成金刚石材料为厚度大于200μm、 500μm、1mm、1.5mm、2.0mm、3.0mm、或5.0mm的层的形式。

       18.如前述权利要求中的任意一项所述的单晶CVD合成金刚石 材料,具有的错位晶束密度小于或等于:106错位cm-2、104错位cm-2、 3×103错位cm-2、103错位cm-2、102错位cm-2、或10错位cm-2。

       19.如前述权利要求中的任意一项所述的单晶CVD合成金刚石 材料,具有的双折射率小于或等于5×10-5、1×10-5、5×10-6、或1× 10-6;

       20.如前述权利要求中的任意一项所述的单晶CVD合成金刚石 材料,其已经进行退火和/或照射。

       21.如前述权利要求中的任意一项所述的单晶CVD合成金刚石 材料,其中,所述单晶CVD合成金刚石材料具有下列颜色中的一种 或多种:粉红色,黄色,绿色,橙色,红色,紫色。

       22.一种制造如前述权利要求中的任意一项所述的单晶CVD金 刚石材料的方法,所述方法包括: 形成包括氢气、碳源气体、氮源气体和可选的氧源气体的CVD 合成氛围,其中,所述CVD合成氛围包括的氮相对于全部气体组分 的原子浓度的范围为0.1%到3%; 在安装于支撑基底上的单晶金刚石基底上生长单晶CVD金刚石 材料;并且 控制支撑基底的温度,使得在生长过程中支撑基底上任意给定点 处的温度变化小于50℃的目标温度值,整个生长周期的温度变化小于 50℃的目标温度值,且目标温度值处于1000℃到1400℃的范围内, 其中CVD合成氛围包括以下的至少一种: 碳相对于全部气体组分的原子浓度的范围为0.1%到2.0%;和 氧相对于全部气体组分的原子浓度的范围为5%到40%。

       23.如权利要求22所述的方法,其中,氮相对于全部气体组分的 原子浓度的范围为0.1%到2%、0.1%到1%、或0.2%到0.8%。

       24.如权利要求22或23所述的方法,其中,碳相对于全部气体 组分的原子浓度的范围为0.3%到1.7%、0.5%到1.5%、0.7%到1.3%、 或0.8%到1.2%。

       25.如权利要求22-24中的任意一项所述的方法,其中,不向CVD 合成氛围中添加氧源气体。

       26.如权利要求22-24中的任意一项所述的方法,其中,向CVD 合成氛围中添加氧源气体,使得CVD合成氛围包括的氧的原子浓度 的范围为5%到40%、10%到30%、10%到25%、或15%到20%。

       27.如权利要求22-26中的任意一项所述的方法,其中,单晶金 刚石基底通过钎焊合金安装到支撑基底上,所述钎焊合金的熔点大于 或等于1000℃、1100℃、1200℃、1300℃、或1400℃。

       28.如权利要求22-27中的任意一项所述的方法,其中,支撑基 底包括难熔金属。

       29.如权利要求22-28中的任意一项所述的方法,其中,跨越支 撑基底的温度变化小于40℃、30℃、20℃、10℃或5℃。

       30.如权利要求22-29中的任意一项所述的方法,其中,跨越单 晶金刚石基底的温度变化小于50℃、40℃、30℃、20℃、10℃或5℃。

       31.如权利要求22-30中的任意一项所述的方法,其中,单晶金 刚石基底通过熔点低于目标温度的钎焊合金安装到支撑基底上,所述 目标温度用于在单晶金刚石基底上生长单晶CVD金刚石材料,使得 在单晶CVD金刚石材料的生长期间,钎焊合金处于液态。
  ① 凡本网注明"来源:超硬材料网"的所有作品,均为河南远发信息技术有限公司合法拥有版权或有权使用的作品,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明"来源:超硬材料网"。违反上述声明者,本网将追究其相关法律责任。
② 凡本网注明"来源:XXX(非超硬材料网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。
③ 如因作品内容、版权和其它问题需要同本网联系的,请在30日内进行。
※ 联系电话:0371-67667020

延伸推荐

单晶硅战场搅局者?光伏设备企业30亿杀入单晶硅领域

在经历二度冲刺终上市、股东蹊跷变换、盈利明显下滑后,一路起伏不定的光伏金刚线切片机全球龙头上机数控突然抛出了重大“杀手锏”:投资30亿,开展单晶硅项目。今年5月,上机数控发布公告,...

日期 2019-08-21   电子光伏

黄河旋风:“1~5毫米宝石级无色单晶金刚石合成关键技...

7月25日,黄河旋风“1~5毫米宝石级无色单晶金刚石合成关键技术研发与产业化”项目获得了许昌市总工会、许昌市科学技术局、许昌市人力资源和社会保障局联合颁...

日期 2019-07-29   上市公司
打造一体化单晶光伏产业链航母 多家机构看好隆基股份全年业绩

打造一体化单晶光伏产业链航母 多家机构看好隆基股份全...

截至7月24日收盘,隆基绿能科技股份有限公司(以下简称“隆基股份”)市值905亿元,位列光伏行业第一。7月17日,隆基股份发布2019年上半年业绩预告,...

日期 2019-07-25   电子光伏

光伏单多晶之争:单晶效率优势逐渐体现

单多晶技术路线分化出现在产业链最前端,转型难度大从目前看,光伏的技术路线主要分为两种,单晶路线及多晶路线。所谓单晶与多晶路线,主要是指光伏硅片采用单晶材...

日期 2019-07-11   电子光伏
元素六:创新性的非平面金刚石

元素六:创新性的非平面金刚石

人造金刚石,基于其卓越的材料性能,是一种独特的多用途的工程材料,它涵盖了从水处理到汽车行业中使用的高功率激光器等各种各样的应用。其中大部分的重大发展都是...

日期 2019-07-10   企业新闻

新突破:现在能让石墨烯,变成单层单晶!

科学家们研究了一个真正的单层,即大面积石墨烯薄膜覆盖在大面积铜箔上。改进了化学气相沉积(CVD)生长方法,消除了石墨烯生长在铜箔上的所有碳杂质。这种均匀...

日期 2019-07-04   超硬新闻

隆基股份明年底单晶硅片产能将达63GW

6月26日,全球单晶市占率第一的光伏制造巨头隆基绿能科技股份有限公司(601012.SH)总裁李振国在北京接受包括界面新闻在内多家媒体的采访,针对近期业内单晶扩产、铸锭单晶、出售电...

日期 2019-06-28   电子光伏

北京大学:单晶单层六方氮化硼的制备取得重要进展

近年来,随着芯片尺寸的不断减小,短沟道效应、热效应等日趋明显,开发全新的二维量子材料体系以实现变革性的器件应用已成为当前科技的研究热点。规模化高端器件应...

日期 2019-06-27   超硬新闻

上机数控30亿元杀入单晶硅领域

伴随光伏电价政策落地,国内光伏产业又将重现生机。产业寒冬之后,机遇随之显现。日前,从事精密机床研发生产的无锡上机数控股份有限公司(简称“上机数控”)宣布...

日期 2019-06-27   电子光伏

2019单晶金刚石及其电子器件国际研讨会在西安交大召...

6月9-11日,由西安交通大学电子物理与器件教育部重点实验室与单晶金刚石电子材料与器件泛太平洋产业联盟共同主办的“2019单晶金刚石及其电子器件国际研讨...

日期 2019-06-13   超硬新闻