您好 欢迎来到超硬材料网  | 免费注册
远发信息:磨料磨具行业的一站式媒体平台磨料磨具行业的一站式媒体平台
手机资讯手机资讯
官方微信官方微信

一种金刚石热沉衬底GaNHEMTs制备方法

关键词 金刚石 , 热沉衬底|2017-03-29 09:26:02|行业专利|来源 中国超硬材料网
摘要 申请号:201611084413.8申请人:陕西科技大学发明人:王进军摘要:本发明公开了一种金刚石热沉衬底GaN基HEMTs制备方法,包括在蓝宝石衬底上MOCVD生长GaN基HEM...
  申请号:201611084413.8
  申请人:陕西科技大学
  发明人:王进军

  摘要: 本发明公开了一种金刚石热沉衬底GaN基HEMTs制备方法,包括在蓝宝石衬底上MOCVD生长GaN基HEMTs外延结构;再采用激光剥离技术对蓝宝石衬底进行剥离;再刻蚀、抛光GaN底表面外延层,同时抛光金刚石热沉片;再在GaN底表面和金刚石热沉片抛光淀积薄层键合粘合剂,进行低温键合、固化得到金刚石/GaN基HEMTs外延材料/Si三层结构;再去除金刚石/GaN基HEMTs外延材料/Si三层结构中Si晶片的临时支撑材料,得到金刚石/GaN基HEMTs外延材料两层结构;再ICP刻蚀GaN基HEMTs外延材料,进行器件隔离;最后制备器件电极。本发明采用高热导率的金刚石做热沉,散热效果优;低温键合方法有效避免了传统的高温键合对材料性能的损伤;蓝宝石衬底激光剥离有效避免了激光剥离对GaN基HEMTs外延材料性能的影响。
  主权利要求:1.一种金刚石热沉衬底GaN基HEMTs制备方法,其特征在于,包括以下步骤:S1:在蓝宝石衬底上MOCVD生长GaN基HEMTs外延结构;S2:采用激光剥离技术对步骤S1所述蓝宝石衬底进行剥离;S3:刻蚀、抛光GaN底表面外延层,同时抛光金刚石热沉片;S4:将步骤S2制备的所述GaN底表面和步骤S3制备的所述金刚石热沉片表面进行抛光并淀积薄层,薄层上键合粘合剂,进行低温键合、固化得到金刚石/GaN基HEMTs外延材料/Si三层结构;S5:去除所述步骤S4得到的金刚石/GaN基HEMTs外延材料/Si三层结构中的Si晶片的临时支撑材料,得到金刚石/GaN基HEMTs外延材料两层结构;S6:ICP刻蚀GaN基HEMTs外延材料,进行器件隔离;S7:制备器件电极。
  2.根据权利要求1所述的一种金刚石热沉衬底GaN基HEMTs制备方法,其特征在于,所述步骤S1具体包括以下步骤:S11:蓝宝石衬底清洗,丙酮、去离子水分别超声2~3分钟;S12:将蓝宝石衬底在900~1000℃的H2气氛下进行烘烤;S13:以三甲基镓和氨气分别作为Ga源和N源,N2和H2作为载气,530~580℃下采用MOCVD技术在蓝宝石衬底上低温生长20nm的GaN成核层;S14:继续升温至1050℃生长3.5μm的GaN缓冲层;S15:再升温至1100℃,在氢气氛围下生长100nm的GaN-UID沟道层;S16:保持温度不变,以三甲基铝和氨气分别作为Al源和N源在生长1nm的AlN插入层;S17:最后以三甲基镓、三甲基铝和氨气分别作为Ga源、Al源和N源,N2和H2作为载气MOCVD交替生长25nm的AlGaN势垒层。
  3.根据权利要求2所述的一种金刚石热沉衬底GaN基HEMTs制备方法,其特征在于,所述外延材料具体为:蓝宝石衬底单面抛光,厚度500μm,GaN成核层厚度20nm,GaN缓冲层厚度3.5μm,本征GaN层厚度100nm,AlN层厚度1nm,AlGaN势垒层厚度20nm。
  4.根据权利要求1所述的一种金刚石热沉衬底GaN基HEMTs制备方法,其特征在于,步骤S2具体为:S21:取Si晶片作为临时支撑材料,用热塑性粘合剂将所述Si临时支撑材料粘到所述GaN基HEMTs外延材料上,形成蓝宝石/GaN基HEMTs外延材料/Si三层结构;S22:用波长248~480nm,脉冲宽度38ns KrF脉冲激光从蓝宝石一面扫描整个样品,激光脉冲的能量密度由焦距40cm的石英透镜调节;S23:加热所述蓝宝石/GaN基HEMTs外延材料Si三层结构,去除蓝宝石衬底,得到GaN基HEMTs外延材料/Si两层结构。
  5.根据权利要求4所述的一种金刚石热沉衬底GaN基HEMTs制备方法,其特征在于:所述步骤S23中,加热所述蓝宝石衬底到Ga的熔点29℃以上。
  6.根据权利要求1所述的一种金刚石热沉衬底GaN基HEMTs制备方法,其特征在于,所述步骤S4中低温键合具体为:分别对GaN底表面和金刚石热沉片表面进行抛光并淀积一薄层,薄层上设置有键合粘合剂苯并环丁烯BCB,然后将所述GaN底表面和金刚石热沉片紧密接触进行低温键合、固化得到金刚石/GaN基HEMTs外延材料/Si三层结构,键合、固化温度不超过150℃。
  7.根据权利要求1所述的一种金刚石热沉衬底GaN基HEMTs制备方法,其特征在于,所述步骤S6具体为:先对所述金刚石热沉/GaN基HEMTs外延材料清洗,再进行欧姆接触,然后离子注入隔离,形成肖特基栅,最后生长Si3N4隔离层。
  8.根据权利要求7所述的一种金刚石热沉衬底GaN基HEMTs制备方法,其特征在于,所述外延清洗采用三氯化碳、四氯乙烯、丙酮、乙醇、去离子水超声各3~5分钟,氮气吹干;然后采用磁控溅射Ti/Al/TiAu,N2保护下在850~900℃、50s进行退火;再注He+20KeV,1×1015cm-2和50KeV,1×1014cm-2;然后光刻3μm栅,磁控溅射Ni/Au,剥离形成肖特基栅,最后生长隔离层。
  9.根据权利要求1所述的一种金刚石热沉衬底GaN基HEMTs制备方法,其特征在于,所述步骤S7制备器件电极具体为:先磁控溅射Ti/Al/TiAu制备源、漏欧姆电极,再He+离子注入隔离,磁控溅射Ni/Au,剥离形成肖特基栅电极;接着PECVD生长Si3N4场板绝缘介质层;然后用ICP刻蚀进行第一次刻孔;然后磁控溅射金属Ni/Au,剥离形成源金属场板;然后在PECVD上生长Si3N4钝化层;然后用ICP刻蚀进行第二次刻蚀接触孔;然后磁控溅射Ni/Au,加厚电极;最后划片封装。
 

① 凡本网注明"来源:超硬材料网"的所有作品,均为河南远发信息技术有限公司合法拥有版权或有权使用的作品,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明"来源:超硬材料网"。违反上述声明者,本网将追究其相关法律责任。

② 凡本网注明"来源:XXX(非超硬材料网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

③ 如因作品内容、版权和其它问题需要同本网联系的,请在30日内进行。

※ 联系电话:0371-67667020

延伸推荐

低热阻未来:室温键合多晶金刚石为GaN电子设备高效降...

在当今的电子设备领域,高功率、高频的半导体器件如GaN高电子迁移率晶体管(HEMT)正变得越来越重要。它们被广泛应用于雷达系统、卫星通信、5G基站、可再...

日期 2025-07-25   超硬新闻

480万片金刚石半导体项目落地,12英寸产线加持!

近日,辽宁沈抚由氢基新能科技集团联合上海卓远方德半导体有限公司共同投资建设的“第四代半导体MPCVD金刚石材料及高端晶圆生产基地”项目正式破土动工。作为...

日期 2025-07-25   超硬新闻

CVD 金刚石薄膜与涂层:制备技术及关键领域应用

金刚石凭借超高硬度、高热导率、宽禁带等优异理化性质,在众多领域展现出广阔应用前景。化学气相沉积(CVD)作为制备金刚石薄膜与涂层的核心技术,已实现多领域突破。接下来将阐述CVD金刚...

日期 2025-07-24   超硬新闻

超万倍!金刚石又突破极限

窄线宽激光器在精密传感、光谱学和量子科学等广泛应用中至关重要。除了光谱宽度外,光谱形状也是一个重要因素,具体取决于应用场景。例如,激光线形两侧的功率可能...

日期 2025-07-24   超硬新闻

三安光电:氧化镓与金刚石研发全面启动

近日,三安光电(600703.SH)在互动平台披露,其旗下湖南三安已正式启动氧化镓(Ga₂O₃)、金刚石等第四代半导体材料的研发工作。这标志着公司在深耕...

日期 2025-07-23   超硬新闻

引领国际!我国牵头制定的首个纳米金刚石国际标准发布

近日,我国超硬材料企业——河南联合精密材料股份有限公司牵头制定的ISO国际标准《特殊用途功能性填料聚合物用纳米金刚石》(ISO6031:2025)正式发布。该标准的成功发布,标志着...

日期 2025-07-23   超硬新闻

国机精工:金刚石散热领域的商业化应用是公司重点发展的...

国机精工7月22日在互动平台回答投资者提问时表示,金刚石散热领域的商业化应用是公司重点发展的方向之一,包括金刚石散热片和金刚石铜等产品。公司看好包括散热、光学窗口等在内的金刚石功能...

日期 2025-07-23   企业新闻

总投资约30亿!又一MPCVD金刚石材料及高端晶圆项...

2025年7月18日,辽宁沈抚改革创新示范区迎来集成电路产业的重要进展。由氢基新能科技集团与主投方上海卓远方德半导体有限公司联合投资的“第四代半导体MP...

日期 2025-07-22   超硬新闻

华为再发金刚石散热领域新专利

随着微电子技术与功率电子技术的快速发展,芯片级和模块级的核心电子器件不断朝着体积更小、功能集成度高、功率密度高的方向发展,这导致电子器件的热流密度也越来...

日期 2025-07-22   超硬新闻

金刚石散热,华为重磅突破!

在先进制程趋于物理极限、芯片封装迈向三维集成的背景下,热管理已成为限制高性能计算系统性能释放的关键瓶颈。近年来,金刚石材料凭借其超高导热率、优异的电绝缘...

日期 2025-07-21   超硬新闻