您好 欢迎来到超硬材料网  | 免费注册
远发信息:磨料磨具行业的一站式媒体平台磨料磨具行业的一站式媒体平台
手机资讯手机资讯
官方微信官方微信

一种基于金刚石NV―色心的加速度传感器

关键词 金刚石 , 加速度传感器 , 航空航天|2016-03-02 09:14:51|行业专利|来源 中国超硬材料网
摘要 申请号:201510783904.0申请人:北京航空航天大学发明人:袁珩曹传桂张刚源张冀星摘要:本发明涉及一种基于金刚石NV―色心的加速度传感器,用含有高浓度NV―色心的金刚石作为...
  申请号:201510783904.0
  申请人:北京航空航天大学
  发明人:袁珩 曹传桂 张刚源 张冀星

  摘要:本发明涉及一种基于金刚石NV―色心的加速度传感器,用含有高浓度NV―色心的金刚石作为磁场敏感元件,以NV―色心系综电子二能级系统在激光脉冲下产生的拉比振荡频率为测量对象,通过光检测磁共振技术(opticaldetectionmagneticresonance,简称ODMR)对拉比振荡频率的测量,实现在外界加速度作用下静磁场源与高浓度NV―色心的金刚石的相对位移变化所导致变化磁场的高精度的测量,进而实现加速度信息的测量。本发明结合了传统加速度传感器的质量-弹簧结构、微纳光-机-电技术与对金刚石NV―色心量子操控的原理,利用金刚石NV―色心可用于超高精度磁场测量的特点,可以得到小体积、超高精度、高灵敏度、测量范围大的加速度传感器元件。对于加速度计、重力仪等技术有着重要的价值。
  主权利要求:1.一种基于金刚石NV-色心的加速度传感器,其特征在于:该加速度传感器内部元件包括半导体激光器(2)、弹簧(3)、U型磁铁(4)、滤光片(5)、雪崩光电二极管(6)、光纤(8)、环形器(9)、磁场敏感部件(10)和固定架(11);所述磁场敏感部件内部包含微波导线(7),左微波波导(12)、右微波波导(13)、介质膜(14)以及NV-色心金刚石(15);半导体激光器(2)、弹簧(3)、U型磁铁(4)、滤光片(5)、雪崩光电二极管(6)、光纤(8)、环形器(9)、磁场敏感部件(10)和固定架(11)集成封装在金属外框(1)内,半导体激光器(2)发出的532nm激光通过光纤(8)导入到环形器(9)后,经光纤(8)到达NV-色心金刚石(15),从而激发NV-色心系综电子能级;NV-色心金刚石(15)受激发后由于感受左微波波导(12)、右微波波导(13)辐射出来的微波磁场,NV-色心激发态电子将与微波产生共振并发出波长范围为600nm-800nm的荧光,其中心波长为637nm;NV-色心金刚石(15)发出的荧光经过介质膜(14)反射通过光纤(8)返回环形器(9),然后荧光通过光纤(8)到达滤光片(5)滤掉532nm绿色反射激光只让荧光通过,之后荧光到达雪崩光电二极管(6),通过荧光的收集和数据处理系统形成ODMR光谱,然后通过测量ODMR光谱中的拉比振荡频率进而实现磁场测量;固定架(11)用于固定磁场敏感元件(10),以防在加速度作用下,磁场敏感元件左右移动,影响测量结果;左微波波导(12)、右微波波导(13)通过微波导线(7)连接到微波波源,并且紧贴在NV-色心金刚石两侧,给NV-色心金刚石提供2.87GHz的微波;U形磁铁(4)和弹簧(3)构成质量-弹簧结构,弹簧(3)呈X形状平衡掉U型磁铁(4)向下的重力;当外界存在线加速度时,质量-弹簧结构左右运动拉伸或压缩,造成NV-色心金刚石感受到的外部磁场环境发生变化,故可以通过ODMR中的拉比振荡频率变化测得外界磁场环境的变化,进而测得质量-弹簧结构与磁场敏感部件的相对位移变化,最终分析整个加速度传感器内部存在的数学关系建立数学模型测得线加速度。
  2.根据权利要求1所述的一种基于金刚石NV-色心的加速度传感器,其特征在于:所有加速度传感器的部件都集成封装在磁屏蔽性能良好的金属外框(1)内;该加速度传感器体积小,成本低,重量轻便于移动和携带。
  3.根据权利要求1所述的一种基于金刚石NV-色心的加速度传感器,其特征在于:利用高浓度金刚石NV-色心可用于超高精度磁场测量的特点进而实现外界线加速度高精度测量。
  4.根据权利要求1所述的一种基于金刚石NV-色心的加速度传感器,其特征在于:所述NV-色心金刚石是高浓度NV-色心金刚石。
  5.根据权利要求1所述的一种基于金刚石NV-色心的加速度传感器,其特征在于:基于金刚石NV-色心的加速度传感器的金属外框是磁屏蔽性能良好的材料,以避免“端接效应”和磁力线穿透屏蔽体范围;使得在金刚石NV-色心加速度传感器在复杂的电磁场环境下能够正常工作,保证了加速度测量的精度和稳定性。
  6.根据权利要求1所述的一种基于金刚石NV-色心的加速度传感器,其特征在于:所述光纤(8)端部的横截面尺寸与高浓度NV-色心金刚石尺寸相匹配。
  7.根据权利要求1所述的一种基于金刚石NV-色心的加速度传感器,其特征在于:磁场敏感元件内部使用了两根微波波导,分别紧贴在高浓度NV-色心金刚石的两侧,作为单极子天线辐射出2.87GHz的微波;在不同微波时序期间分别向两根微波波导馈送微波,对测得的信号做差分数据处理,可以降低噪声。
  8.根据权利要求1所述的一种基于金刚石NV-色心的加速度传感器,其特征在于:靠近NV-色心金刚石的光纤端面覆有介质膜,反射荧光中心波长为637nm。
  9.根据权利要求1所述的一种基于金刚石NV-色心的加速度传感器,其特征在于:高浓度NV-色心金刚石传感器采用了特定的质量-弹簧结构;X弹簧可以平衡掉U型磁铁的重力并且可以通过调节弹簧的阻尼系数来调节加速度传感器的灵敏度,并且增大了加速度传感器的测量范围。
  10.根据权利要求1所述的一种基于金刚石NV-色心的加速度传感器,其特征在于:所述的通过测量ODMR光谱中的拉比振荡频率进而实现磁场测量为:通过测量ODMR光谱中的拉比振荡频率进而实现高精度的磁场测量,其中,测量灵敏度达到100pT/Hz0.5量级。
 

① 凡本网注明"来源:超硬材料网"的所有作品,均为河南远发信息技术有限公司合法拥有版权或有权使用的作品,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明"来源:超硬材料网"。违反上述声明者,本网将追究其相关法律责任。

② 凡本网注明"来源:XXX(非超硬材料网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

③ 如因作品内容、版权和其它问题需要同本网联系的,请在30日内进行。

※ 联系电话:0371-67667020

延伸推荐

【每日科普】纳米金刚石热浸技术对20Cr2Ni4钢耐...

渗碳技术是现阶段公认对提高该材料的硬度和耐磨性最有效的方法之一。但该法对提高该材料耐磨性很有限。纳米金刚石微粉热浸技术作为一门新型技术,工艺方便简单,设备要求不高,对环境和操作人员...

日期 2025-08-01   超硬新闻

中南钻石:金刚石新专利公布

7月30日,国家知识产权局信息显示,中南钻石有限公司取得一项名为“一种大腔体金刚石合成柱横向截断工装”的专利,授权公告号CN223161155U,申请日期为2024年09月。专利摘...

日期 2025-08-01   行业专利

中国科学家成功合成百微米级六方金刚石,硬度超天然金刚...

经过近十年持续攻关,北京高压科学研究中心联合中国科学院西安光机所的国际研究团队获得重大突破。研究人员成功将高质量石墨单晶前驱体转化为百微米级六方金刚石,这一成果已于30日在国际权威...

日期 2025-08-01   超硬新闻

【每日科普】纳米金刚石在光致发光领域的应用

美国罗切斯特大学研究人员首次在自由空间内的悬浮纳米金刚石上测量到光致发光所发出的光束。该实验利用激光将纳米金刚石固置在空中,然后用另外一束激光照射金刚石,使之以定频形式发光。光学教...

日期 2025-07-31   超硬新闻

“哈密育晶+河南深加工”模式显成效 豫哈两地金刚石产...

在“双碳”目标引领下,河南省与哈密市通过创新“政府+商(协)会+企业”三维联动机制,共同搭建的豫哈零碳科技产业援疆平台成效显著。截至今年6月底,该平台已为哈密吸引投资99.8亿元,...

日期 2025-07-31   超硬新闻

黄河旋风合资公司发四类金刚石新品,力破半导体散热难题

近日,在河南许昌举办的“‘碳’索未来‘钻’破极限”金刚石类散热封装材料与器件研讨会上,河南乾元芯钻半导体科技有限公司推出的四类金刚石新品成为行业焦点。这...

日期 2025-07-30   超硬新闻

国际金刚石及相关材料应用大会聚焦电子装备创新,全球顶...

2025年7月28日—29日,郑州嘉锦酒店内学术氛围热烈,国际金刚石及相关材料应用大会进入第二阶段——国际会议。作为全球超硬材料领域规模最大、规格最高的...

中机新材:金刚石衬底抛光新专利

近日,国家知识产权局信息显示,深圳中机新材料有限公司申请一项名为“一种用于金刚石衬底的精抛液及其制备方法、金刚石衬底的抛光方法”的专利,公开号CN120...

日期 2025-07-30   行业专利

每日科普:纳米金刚石在磨料磨具领域的应用

纳米金刚石在磨料磨具领域主要用来与过渡金属混合制造高强度低气孔率的金刚石烧结体,其显微硬度可达6000~7000kg/mm2。可用来加工软或脆性材料,加工表面粗糙度很低。如果预先外...

日期 2025-07-30   超硬新闻

破界·导热:金刚石非金属复合材料

金刚石因其极高的热导率(约2000W/(m・K))成为高热导复合材料的理想增强相,但传统金刚石-金属复合材料存在界面润湿性差、材料密度高等问题。近年来,...

日期 2025-07-30   超硬新闻